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Memory driven Ginzburg-Landau model
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The time evolution of a bistable Ginzburg-Landau mo¢ieL) with a non-Markovian memory term of
strength\ is studied. Due to the nonlinear feedback coupling, the two branches of the stationary solution are
not only controlled by the sign of the initial conditid®,, but also by the strength and the sign\ofWhereas
in case of a positive. the stationary solution is ever reduced through the memory, it may be increasing for
A <0. In that case the system is also able to switch over between both branches of the stationary solution. Such
an ability is exclusively achieved for a negatixewithin an interval —u<A<\., where\. is a critical
memory strength and is the strength of the conventional nonlinear term within the GL. The complete phase
diagram is presented in the,-A plane analytically and numerically.
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[. INTRODUCTION be coupled to the time evolution in the past. Hence, it seems
to be worthwhile to study simple models, which still con-
The crucial factor governing the dynamics of systemsserve the crucial dynamical features of evolution models as
comprizing many “units” such as people, species, cells, fi-nonlinearities and moreover as a new ingredient, delayed
nancial transactions, etc., consists of interaction and compdeedback-coupling. In the present paper we propose a model,
tition. Such features are believed to underlie the complexvhere such retardation effects, characterized by a memory
dynamics observed in disciplines as diverse as economidernel K(t), are taken into account explicitly. Such a
[1—-4], biology and weathéfi5], politics[6], medical car¢7],  memory kernel can be derived following the well established
and ecology[8]. Another characteristic of physicp®,10] as  projector formalism proposed in R¢L3], see also Ref.14].
well as biological systerrd 1] is time delayed feedback cou- Recently, one of us had been successful in finding a nonlin-
pling. Let us illustrate it by considering a certain amount ofear evolution equation of Fokker-Planck typ&5] with
money, available for financial transactions, at present timememory. The form and the relevance of that term had been
Obviously that amount depends on the history of the sampldiscussed by analyticdll5] and numerical methodgl6].
to which it belongs. In the same sense, the change in growtNotice that the approach had also been very powerful in
rate of a population should be influenced by the change istudying the freezing processes in glasgEs18. Our ap-
growth rate in the past. Moreover, the time evolution of anproach yields nontrivial analytical results by assuming that
order parameter could be determined by non-Markovian prothe kernel is originated by the basis quantift) in a self-
cesses. Thus the evolution equation for a certain quantityrganized manner, i.eK(t) is determined byP(t) itself. In
denoted a$(t), has to be supplemented by a memory termdetail, we consider the time-dependent-Ginzburg-Landau
Such a term models, for instance, the way in which a seethodel (GL), supplemented by a memory term, where that
capital had been accumulated by rates of interest, the yieldgedbackcoupling is likewise nonlinear in the basis quantity
the business on the stock market. In other words, the chand?(t). Consequently, the model offers an additional competi-
ing rate of a certain quantity at tintds also determined by tion between the nonlinearity, inherent in the GL, and the
the accumulation rate at a former tirtle<t. In between, i.e., nonlinear memory term. The final results depend decisively
within the intervalr=t—t’, the owner of the capital is in on the strength and the sign of the feedback coupling, de-
general interested to augmeR(t). Regardless of fluctua- noted by\, and moreover on the initial conditior%,. There
tions, the available capital at timedepends in a decisive exists a rich phase diagram in tRg-\ plane. The analytical
manner on the instantaneous gain and loss of money as welksults are strongly supported by numerical calculations.
as on the changing rate at former tiniésin the same sense, Note that the influence of a global feedback has been studied
the time evolution of the deviation from an averaged productecently in a bistable systefi9]. The purpose of that paper
tion rate in economy includes both an increasing part, origiwas a discussion of the domain-size control by a feedback.
nated by an improved rationalization and reinvestigation, andlowever, the approach and the basis equations are com-
a saturation due to the common market situafi]. In case ~ pletely different from the present paper.
of a phase transition, especially in strongly disordered sys-
tems, the present time evolution of an order parameter may Il THE MODEL
In this section we introduce a model for the time evolu-
*Electronic address: trimper@physik.uni-halle.de tion of a quantityP(t), which can be considered as the order
"Electronic address: michael.schulz@physik.uni-ulm.de parameter, a certain amount of money available at the
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present timet, a population, a production, rate, etc. As linear term with the prefactarin Eq. (1). The basis equation
stressed in the Introduction, the time evolution B(t) for the forthcoming studies now reads

should also be determined by the time evolution in the past.
Following the idea presented in Réfl5], we propose the

t
= — 3(+) — 20t —t"Vg., ’ ’
following non-Markovian evolution equation: APO=rP(1)=uPt) )\fop (t=t")ay P()A’,

3
aP(t)=r(P)P(t)—u(P)P(t) ®
. where we suppose>0 andu>0. As stressed above, the
_)\J' K[t—t':P(t")]d, P(t")dt’. (1) parameter_)\ can be positive or negative. Where_as for0
0 both nonlinear terms are loss terms, a negative feedback-

coupling\ <0 leads to a competitive situation. The memory
The first term characterizes the gain term due to the expens@grnel gives rise to a coupling between different time scales.
whereas for generality the input ratéP)>0 can also de- |n the vicinity of the upper limit of the integral’ =t the
pend on the instantaneous amo@&(t). The case of a con- memory term read& (0)4,P(t), i.e., a momentary change at
stant rater(P)=r>0 (low temperature phase in case of the observation time is coupled to the value at the initial
phase transitionsmeans that percentage of the available time t=0. Therefore the very past is related to the instanta-
money is obtained as income. Because this case gives rise f@ous value oP(t). In the opposite case, at the lower limit
an exponential increase €X(t), one has to balance the gain t’=0, the change of the order parameter near to the initial
by a loss ternu(P). To get a stable gain for positive rates  value 9,,P(t'=0) is directly coupled to the instantaneous
andu, the loss term is assumed to be:P?, which corre-  valueK(t). Insofar the memory term represents a weighted
sponds to the time-dependent GL. Notice that the generigoupling of time scales, namely between the initial time and
behavior, discussed below, is not changed by assuming othgie present one. In this manner one should expect that the

terms with different power laws in Eq1). Obviously, there  pehavior of the system will be changed due to the memory
occurs a competition between the loss and the gain termffects.

which yields a stable fixed point. This behavior is strongly

modified by a memory term which can be realized by a fee:d— IIl. ANALYTICAL RESULTS
back coupling. To that aim let us assume that the changing
rated,P(t) at the timet is determined by the rate at a previ-  In this section we find the stationary solutions of Egj.

ous timet’ <t. There is a general scheme to derive equation@nd discuss their stability.

of type (1) [14], where one starts from the microscopical

equations. By projecting out all the irrelevant variables, the A. Stationary solutions
procedure leads to an equation of type e, \.Nh'(.:h IS The solution of the evolution Ed3) is simple when the
supplemented by a special self-consistent realization of the

kernelK(t), the basis equation of our analysis. The param—memory kernel is zero, 1.e\=0. It results in

eter\ in EqQ. (1) characterizes the strength of the memory. p2
Here we demonstrate that the results are strongly influenced P2(t)= s
by the sign of\, provided the kernel is for instance positive 1+ (w?—1)exp(— Aot)

definite. If A <0, then an accumulation of the capital at the
former timet’, i.e., 4,/ P(t')>0, leads to a further increase Wit
at timet whereas the opposite situation;>0, gives rise to a
decrease of money dt A positive definite kerneK(t) is Po=P(t=0), w=—, (4)
assumed to be valid for glassils7,18. Obviously, the pro- Po

jector formalism offers that the kernel is given by the rel-
evant variableP(t) itself. Insofar, the memory effects are
self-organized by the system. Thus, it seems to be a reaso
able assumption that the time scale of the memory kernel ;
K(t) is determined by the time scale B{t). Therefore, we P=+ \ﬁ
supposeK (t;P(t))=K(P(t)), i.e., the memory term is fixed u
by P(t), accessible in the intermediate time intervalt’. . . : "
Furthermore, the memory kernel is assumed to be a regulz;rrhe quantityw, m_troduced n Eq(4), measures the profit in
function of P(t). Hence K(t) can be expanded with respect case ofw>1. A linear stability analysis leads to

where the nontrivial stationary solution in the long time limit
gffers the two branches

©)

to P(t), see also Ref.20]. It results in P(t)=P.+(Pg—Poexp—Agt) with Ag=2r. (6)
—pa S v Solution Eq.(4) shows that the sign of the initial valu®,
Kt=P (“;o ¢RI, @ determines the sign d®(t) uniquely. A positive start capital

leads consistently to a positive stationary solutinwith
where the most interesting case is realizeddet2 by ne-  evenP(t)>0 for the whole time interval &t<. Although
glecting all higher order terms. In that case the memory ternthe stationary solution is independent of the initial value, the
may be an additional competitive one compared to the nonsign of P, selects the branch to whidRg belongs. In other
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words, using a financial interpretation, a positive seed capitalhe parametek characterizes the influence of the memory
can never lead to debts. The inclusion of a memory term willkk=\/u. The stationary solutionf.. are given in Eq.(9).
change that behavior drastically. To that aim let us analyz&he special cas&= —1 will be discussed separately. Here
how the profit rate will be controlled by the feedback cou-we study the stability as well as the stationary solution itself
pling. For nonzero memory term the solution of E§) can  in terms of the free parameter where the gain and loss
be found using Laplace transformation, defined 4P (t)) parameters andu are assumed to be fixed. If the memory

=P(2) = [;P(t)exp(-zfdt. We get strength is positive,>0 or alternativelyx>0, then both
nonlinear terms in the basis equati®) with the coupling
uB(z) constantsu and \, respectively, become loss terms, and
o 1+ NA(2) therefore the memory term should only modify the stationary
P(z2)= —— solution. Indeed, we get in accordance with the general dis-

r

L — cussion, presented in Sec. Il, the following results. If the
1+NA(2)

initial value Py>0 and further larger than the stationary

value P¢ without memory, see Ed5), i.e.,w<1, then the

time delay leads to a reduced gdtg>f. >P,, whereas in

A(z)=L(P4t)) and B(z)=L(P31)). (7)  the opposite case>1, the memory does not reveal an ad-

ditional enhancement of the capi@})<f , <Pg. Both solu-

A time persistent solution is obtained by making the ansattions are stable for all values of the parameter0O. If one

P(t)=f+d(t) or afterL, starts with debts, i.eR(<<0, the stable solution i_ and all

the results are valid in the same manner as ffor The

situation is comparable with that one obtained for a zero

memory termx=_0.

The situation becomes more complicated in case\ of
where the function®(z) remains regular foz—0. The <0, because the nonlinear terms in E8). are competitive
quantity f represents the order parameter in the litaitoo. ones. Moreover, the behavior depends decisively on the ra-
Apart from the trivial solutionf=0 there exist two new tios x=N/u<0 and onw=P¢/P,, respectively. In discuss-
branches of nontrivial solutions, ing the complete solution we have to distinguish three cases,
(i) —u<A<O, (ii)) A\=—u, and (iii) —3u<A<—u. The

z

with

f
P(Z)=E+Cb(z), (8)

fo(x,w) X previous restriction to-3<x<—1 is originated by the ob-
F.= Py 2(14x) 1=sgn(Pox)sgn(1+x) servation that forx<<—3 the stationary solution is always
unstable in accordance with the second part of (&Q).
AW(1+x) N (i) —1<x<0 or|\|<u. In the case of a small memory
X 1+———7, =_. 9) strength there exist two real solutioRs. . From Eq.(9) we
X2 u conclude
As remarked before, the parametkris assumed to be F.(Po>0)=F_(Py<0),
posititve or negative, whereasis always positive. There-
fore, the dimensionless quantitycan also adopt both signs. F_(Py>0)=F_,(P,<0). (11)

In case of vanishing memory it results (x=0w) =Py, in-
dependent oP, and in accordance with E@5). In general,  Therefore, further discussion can be restricte®§e-0, i.e.,

the solution depends on the initial valﬁl@. For an infinite positive seed CapitaL Fav>1 we get a positive solution
memory strengtix— o the stationary solutions are given by with

F.=1 andF_=0,i.e., the parametersaandu are irrelevant.

This is consistent with the assumptior=u=0 from the fL(x,w)>Ps>Py or F.(x,w)>w>1. (12
beginning. If one starts witlPy=Pg it resultsF, =1 or
F_o=—(1+x)" L Inserting the last result into E410), we find that the stabil-
ity exponent fulfills the relatiom\ , >0, and consequently,
B. Phase diagram the solution is stable within the whole range of the memory

arameter —1<x<0. Thus, a small negative memory
strength leads to a real increase of the order paran®éter
“The gain is greater than that obtained without memory ef-
fects. In case olv<1 or P,< P, there exists a critical value
X. above which the order parametft) can change its sign,
i.e., starting with a positive initial valuBy>0, the system is
able to reach the negative stationary solutior<0. In other
words, the system may switch over to the negative branch of
) . x#—1. the stationary solution which is impossible without the
memory term. To study that problem in detail, we have to
(100  analyze the stability exponent. From Eqg.(10) it results

In this subsection the phase diagram is obtained by e
ploying linear stability analysis. Note that it cannot be per
formed in terms ofP(z) defined in Eq.(8). Instead of that
we have to inserP(t)=f+®(t) in Eq. (3). As the result we
find ®(t)xexp(~At), where the stability exponent\
=f2(3u+\)—r can be rewritten as

. 2 +x

F< 3 xF
—=—1+—=(3+X)=—1+— —
r W2

2

+

1+
1+x

w
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FIG. 2. Temporal evolution oP(t) with A\=-0.8 andP,=2

FIG. 1. Phase diagram in thex plane withp=Po. The phase ¢, gifferent methods discussed in Sec. IV, paramé@er0,1/2,1;
boundaries are the zeros of the stability exponentgiven by Eq. step sizer=0.1.

(10).

A
T=2w2—1.

only one stable solution within the interval\B<w<1 in
the whole range- 1<x<0. However, for Gcw<1/y2 the
exponentA . is only positive forx,<x<0, wherex; is de-  Therefore we get a stable solutiorfif<P.= 2P, whereas
termined as a solution of(3+x)=4w?. This equation of-  in the opposite case the solution is unstable. Note that in this
fers three real solutions where only one of them is situated iase the initial valué®, is overrated because the stationary
the interval—1<x<0. The critical memory strength follows solution leads tdf <P, *, which indicates that the model is

from the relation not very appropriate in that case. On the other hand, the
result points to the decisive influence of the time delay ef-
X.=/3sing)—cog¢) with ¢=3arccos2w?) fects to the stationary solution of a nonlinear model.

(i) —3<x<—1. In contrast to the other cases both so-
lutions F . (Py>0) are positive with
W<i. (13 1 B \/ﬁ
V2 FL(Pg>0)= 513 D W+ aw?(x+ 1)1>0.
(14

If w<1 the critical parameter i5,= —2JuP/(3|Pg|). For
X>X. the solutionF, becomes unstable and as the conse
guence, the always stable solutibn <0 is adopted, i.e.,
P(t) is able to cross theé axis during its time evolution.
Insofar, a negative memory strength allows a change ov ) ) X X .
from gain to loss of capital. Due to the symmetry of the '€ the discussion can bg restricted again to a p05|t|v2e seed
problem, manifested by Eq11), one can also realize the c@pPital. Ifw>1, the squuonszare real fax=x,=—2w
inverse situation by starting with a negative initial value T2WVW°—1 or x=x,=-—-2w"—2wyw"—1. Otherwise
(debts and ending up with a positive stationary solution. there appear complex solutions. The stability exponents ful-

Such a behavior is driven by the memory effect exclusivelyfill the relation

The discussed behavior can be likewise verified, at least A.<0

guantitatively, using the basis equati(8). Let us assume a =

positive initial valuePy>0 and further suppose the exis- gnd

tence of a finite time;>0 at whichP(t) fulfills P(t,)=0.

Such a behavior can be realizedjfP(t") <0 is fulfilled in A_>0 for Xxg<x<-—1, (15

the complete time interval @t’ <t;. A further decrease of i i ) .

P(t) is only guaranteed fox<0 as it follows from Eq.(3) vvzhere X3 IS thg corresponding solution of the equation

directly. The results can be further confirmed by a numericak (3+X) = —4w"(x+1). There appears only one stable so-

approach, discussed in Sec. IV. lution F_ within the |nterva|X3<X<_1. In case of 1@
(i) x=—1. If both loss terms are balanced out, the <W<1 we find

memory parameter is fixed ¥ |=u. In that case the initial

value Py has to be as the free parameter. Both stationary

solutions are degenerated wih=w?. Furthermore, the sign gnq

of the seed capital determines the signRgt) in the whole

parameter space. The stability exponents reads A_>0 for xsg<x<-—1, (16)

Thus, starting with a positive initial value,, the evolution

ends up always at a positive stationary value. Due to the

symmetry properties given by E@l1l) we conclude that a
egativeP, never leads to a positive stationary value. There-

for —3<x<x3

A;>0 for —3<x,<x<-2
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FIG. 3. Temporal evolution oP(t) for nega-
tive memoryA=—0.8 andPy=2 with a high
time resolution, step size=0.001. The curves
for different ® =0,1/2,1—parameters are degen-
erated for such a high resolution.

p(t)

wherex, andxs are the solutions of the equatio’(3+ x) for another class of integrodifferential equations of convolu-
=4w?. If 1<w<1/\/2 the solutionF_ is unstable in the tion type, see Ref21]. In that case the weights are assumed
whole range of the memory strength3<x<-—1, whereas as follows:

the solutionF , is stable in the intervak,<x<—2. Let us

shortly discuss the special case of a zero initial valge

=0. Here, the stationary solution and the stability exponent [vg,v], ... wn_1,00]=[0,1,...,1,1- 0],
read
fo=+Pg / 1_, é — 2 X —1. where® =0 leads to the implicit Euler formul@ =1 cor-
- 1+x* r 1+4x responds to the explicit Euler-formula, af@i=1/2 is the

trapezium rule. In our approach we have mainly used the
explicit Euler formula to compare the asymptotic behavior of
%(t), compare Eq(9), with the numerical ones. In Fig. 2 one
can find the results for different realizations of the parameter
0, but using the same step size 0.1. For such a low reso-
lution of the step width the numerical results suggest that the
fime evolution ofP(t) tends to the unstable fixed point and

the solution remains positive. A higher resolution with a re-

phase boundarie_s_ are found r_;malytically by calculgting th‘?juced step size offers a more pronounced behavior repre-
zeros of the stability exponerk in Eq. (10). More details of sented in Figs. 3 and 4 in case 0£0. The finer the time

:ir;)en nhumerical approach are discussed in the following Secg}rid chosen, the smaller is the difference between the differ-

ent® methods, in Fig. 3 the curves f&®=0,1/2,1 are de-

generated. The oscillations, visible in Figs. 3 and 4, are not
IV. NUMERICAL APPROACH yet suppressed in a decisive manner. It remains an open
To illustrate the analytical results outlined in the preced-Problem, whether the oscillations are due to the feedback

ing section, the application of numerical approximations of¢OUPling or induced by the discretization procedure. Our nu-
the integrodifferential Eq(3) is efficient. Because of the Merical approach, by reducing systematically the time grid,
nonlinearity one cannot expect solutions in a closed formSuggests that the oscillations and the steps are an intrinsic

Instead of that we have applied numerical techniques to figEfféct of the nonlinear system. A possible scenario could be
ure out the solutiorP(t). Introducing discrete time steps by related to the occurence of metastable states, in which the

t,=nr (ris the step sizewe discuss the evolution equation system is confi_ned temporarily._ Under the influence of the
feedback coupling the system is able to escape from those
n metatstable states. Equatid®) offers in case ofA<0 an
Poi1=Py+7 rPn—uPﬁ—AZ v?Pﬁ,j(PjH— P 1. decreasing derivative of;P(t)<0 if it had been decreased
=0 in the pastd;,P(t")<0 with t’' <t. Both Figs. 3 and 4 illus-
(17)  trate that the positive stationary solution becomes unstable
and the trajectoryP(t) changes its sign abruptly and crosses
The weightSUJn depend on the quadrature rule which is ap-thet axis. Likewise in Fig. 4 the time evolution d#(t) is
plied. Here, we use the so-called genefalrule discussed shown for the same negative value of the memory strength,

For —1=<x< the solution is stable whereas for — 1 the
solution is unstable. Summarizing all the different cases w
get a phase diagram within tlig-x plane, which is depicted
in Fig. 1. Here, the sign of the stability exponeft, is
represented for fixed parametar&nd u. As discussed be-
fore, we get stable and unstable solutions, and furthermore
unphysical complex solution discussed before @d). The
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FIG. 4. Temporal evolution ofP(t) for A
<0 and®=0. The dotted line corresponds to the
positive fixed point which becomes unstable.
P(t) changes its sign.

P(t)

0 200 400 600 800 1000
t

but for a longer time scale. Notice that the crossing scenaricelated to an instantaneous loss term whereas the other one is
is in accordance with the analytical results. It corresponds toriginated by the memory effects. Even that kind of compe-
the unstable island in the upper half of Fig. 1. The effect istition leads to a richer behavior as the conventional
traced back to the feedback coupling in a nonambiguou§inzburg-Landau model. The main feature of our model con-
manner. sists of a mixing of different time scales, which is manifested
by our basis equatio(8). The behavior at the current time is
V. CONCLUSIONS related to the rates in the past. Therefore, the system offers
) _ ~ the possibility that debts can be reduced by prosperous ma-
In this paper we have discussed a more general timesjplations in the past although the present situation would
dependent Ginzburg-Landau model by including a selfingicate an unfavorable development. Another form of the
organized memory coupling, i.e., the instantaneous changingedback coupling, such as a cumulative §22], leads to
rate of the order parameter is not only determined by timexompletely different results. In the present paper we have
local gain and loss terms, but additionally by the changingjiscussed a Ginzburg-Landau-like model with feedback
rate in the past. Consequently it means in terms of a financigjnere the stationary solution can be found exactly. Based on
transaction, the flow of the money is determined by the ac jinear stability analysis, we obtain a phase diagram which
cumulation or the loss of capital at previous times. To capyjiffers significantly from the standard model. Especially, the
ture the influence of such a delay process, a memory terfeedback reveals the ability of a switchover of the two sta-
had been included into the evolution equation. To find out aRjonary solutions. The results are supported by numerical so-
analytical form of such a feedback coupling, projection|ytions. we believe that memory effects are also a feature of
methods of statistical mechanics are adopted. Especially, thgner dynamical complex systems.
form of the memory is suggested by investigation in glasses
or the anomalous diffusion of particles in a disordered media. ACKNOWLEDGMENTS
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