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Memory driven Ginzburg-Landau model
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The time evolution of a bistable Ginzburg-Landau model~GL! with a non-Markovian memory term of
strengthl is studied. Due to the nonlinear feedback coupling, the two branches of the stationary solution are
not only controlled by the sign of the initial conditionP0, but also by the strength and the sign ofl. Whereas
in case of a positivel the stationary solution is ever reduced through the memory, it may be increasing for
l,0. In that case the system is also able to switch over between both branches of the stationary solution. Such
an ability is exclusively achieved for a negativel within an interval2u,l,lc , wherelc is a critical
memory strength andu is the strength of the conventional nonlinear term within the GL. The complete phase
diagram is presented in theP0-l plane analytically and numerically.
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I. INTRODUCTION

The crucial factor governing the dynamics of syste
comprizing many ‘‘units’’ such as people, species, cells,
nancial transactions, etc., consists of interaction and com
tition. Such features are believed to underlie the comp
dynamics observed in disciplines as diverse as econom
@1–4#, biology and weather@5#, politics @6#, medical care@7#,
and ecology@8#. Another characteristic of physical@9,10# as
well as biological systems@11# is time delayed feedback cou
pling. Let us illustrate it by considering a certain amount
money, available for financial transactions, at present ti
Obviously that amount depends on the history of the sam
to which it belongs. In the same sense, the change in gro
rate of a population should be influenced by the change
growth rate in the past. Moreover, the time evolution of
order parameter could be determined by non-Markovian p
cesses. Thus the evolution equation for a certain quan
denoted asP(t), has to be supplemented by a memory ter
Such a term models, for instance, the way in which a s
capital had been accumulated by rates of interest, the y
the business on the stock market. In other words, the ch
ing rate of a certain quantity at timet is also determined by
the accumulation rate at a former timet8,t. In between, i.e.,
within the intervalt5t2t8, the owner of the capital is in
general interested to augmentP(t). Regardless of fluctua
tions, the available capital at timet depends in a decisive
manner on the instantaneous gain and loss of money as
as on the changing rate at former timest8. In the same sense
the time evolution of the deviation from an averaged prod
tion rate in economy includes both an increasing part, or
nated by an improved rationalization and reinvestigation,
a saturation due to the common market situation@12#. In case
of a phase transition, especially in strongly disordered s
tems, the present time evolution of an order parameter m
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be coupled to the time evolution in the past. Hence, it see
to be worthwhile to study simple models, which still co
serve the crucial dynamical features of evolution models
nonlinearities and moreover as a new ingredient, dela
feedback-coupling. In the present paper we propose a mo
where such retardation effects, characterized by a mem
kernel K(t), are taken into account explicitly. Such
memory kernel can be derived following the well establish
projector formalism proposed in Ref.@13#, see also Ref.@14#.
Recently, one of us had been successful in finding a non
ear evolution equation of Fokker-Planck type@15# with
memory. The form and the relevance of that term had b
discussed by analytical@15# and numerical methods@16#.
Notice that the approach had also been very powerfu
studying the freezing processes in glasses@17,18#. Our ap-
proach yields nontrivial analytical results by assuming t
the kernel is originated by the basis quantityP(t) in a self-
organized manner, i.e.,K(t) is determined byP(t) itself. In
detail, we consider the time-dependent-Ginzburg-Land
model ~GL!, supplemented by a memory term, where th
feedbackcoupling is likewise nonlinear in the basis quan
P(t). Consequently, the model offers an additional comp
tion between the nonlinearity, inherent in the GL, and t
nonlinear memory term. The final results depend decisiv
on the strength and the sign of the feedback coupling,
noted byl, and moreover on the initial conditionsP0. There
exists a rich phase diagram in theP0-l plane. The analytical
results are strongly supported by numerical calculatio
Note that the influence of a global feedback has been stu
recently in a bistable system@19#. The purpose of that pape
was a discussion of the domain-size control by a feedba
However, the approach and the basis equations are c
pletely different from the present paper.

II. THE MODEL

In this section we introduce a model for the time evo
tion of a quantityP(t), which can be considered as the ord
parameter, a certain amount of money available at
©2002 The American Physical Society14-1
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present timet, a population, a production, rate, etc. A
stressed in the Introduction, the time evolution ofP(t)
should also be determined by the time evolution in the p
Following the idea presented in Ref.@15#, we propose the
following non-Markovian evolution equation:

] tP~ t !5r ~P!P~ t !2u~P!P~ t !

2lE
0

t

K@ t2t8;P~ t8!#] t8P~ t8!dt8. ~1!

The first term characterizes the gain term due to the expe
whereas for generality the input rater (P).0 can also de-
pend on the instantaneous amountP(t). The case of a con
stant rater (P)5r .0 ~low temperature phase in case
phase transitions! means thatr percentage of the availabl
money is obtained as income. Because this case gives ri
an exponential increase ofP(t), one has to balance the ga
by a loss termu(P). To get a stable gain for positive ratesr
and u, the loss term is assumed to beu}P2, which corre-
sponds to the time-dependent GL. Notice that the gen
behavior, discussed below, is not changed by assuming o
terms with different power laws in Eq.~1!. Obviously, there
occurs a competition between the loss and the gain t
which yields a stable fixed point. This behavior is strong
modified by a memory term which can be realized by a fe
back coupling. To that aim let us assume that the chang
rate] tP(t) at the timet is determined by the rate at a prev
ous timet8,t. There is a general scheme to derive equati
of type ~1! @14#, where one starts from the microscopic
equations. By projecting out all the irrelevant variables,
procedure leads to an equation of type Eq.~1!, which is
supplemented by a special self-consistent realization of
kernelK(t), the basis equation of our analysis. The para
eter l in Eq. ~1! characterizes the strength of the memo
Here we demonstrate that the results are strongly influen
by the sign ofl, provided the kernel is for instance positiv
definite. If l,0, then an accumulation of the capital at t
former timet8, i.e., ] t8P(t8).0, leads to a further increas
at timet whereas the opposite situation,l.0, gives rise to a
decrease of money att. A positive definite kernelK(t) is
assumed to be valid for glasses@17,18#. Obviously, the pro-
jector formalism offers that the kernel is given by the r
evant variableP(t) itself. Insofar, the memory effects ar
self-organized by the system. Thus, it seems to be a rea
able assumption that the time scale of the memory ke
K(t) is determined by the time scale ofP(t). Therefore, we
supposeK„t;P(t)…[K„P(t)…, i.e., the memory term is fixed
by P(t), accessible in the intermediate time intervalt2t8.
Furthermore, the memory kernel is assumed to be a reg
function of P(t). Hence,K(t) can be expanded with respe
to P(t), see also Ref.@20#. It results in

K~ t !5Pa~ t ! (
n50

`

cnP~ t !n, ~2!

where the most interesting case is realized fora52 by ne-
glecting all higher order terms. In that case the memory te
may be an additional competitive one compared to the n
02611
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linear term with the prefactoru in Eq. ~1!. The basis equation
for the forthcoming studies now reads

] tP~ t !5rP~ t !2uP3~ t !2lE
0

t

P2~ t2t8!] t8P~ t8!dt8,

~3!

where we supposer .0 and u.0. As stressed above, th
parameterl can be positive or negative. Whereas forl.0
both nonlinear terms are loss terms, a negative feedb
couplingl,0 leads to a competitive situation. The memo
kernel gives rise to a coupling between different time sca
In the vicinity of the upper limit of the integralt8.t the
memory term readsK(0)] tP(t), i.e., a momentary change a
the observation timet is coupled to the value at the initia
time t50. Therefore the very past is related to the instan
neous value ofP(t). In the opposite case, at the lower lim
t8.0, the change of the order parameter near to the in
value ] t8P(t850) is directly coupled to the instantaneou
valueK(t). Insofar the memory term represents a weigh
coupling of time scales, namely between the initial time a
the present one. In this manner one should expect that
behavior of the system will be changed due to the mem
effects.

III. ANALYTICAL RESULTS

In this section we find the stationary solutions of Eq.~3!
and discuss their stability.

A. Stationary solutions

The solution of the evolution Eq.~3! is simple when the
memory kernel is zero, i.e.,l50. It results in

P2~ t !5
Ps

2

11~w221!exp~2L0t !

with

P05P~ t50!, w5
Ps

P0
, ~4!

where the nontrivial stationary solution in the long time lim
offers the two branches

Ps56Ar

u
. ~5!

The quantityw, introduced in Eq.~4!, measures the profit in
case ofw.1. A linear stability analysis leads to

P~ t !.Ps1~P02Ps!exp~2L0t ! with L052r . ~6!

Solution Eq.~4! shows that the sign of the initial valueP0
determines the sign ofP(t) uniquely. A positive start capita
leads consistently to a positive stationary solutionPs with
evenP(t).0 for the whole time interval 0<t,`. Although
the stationary solution is independent of the initial value,
sign of P0 selects the branch to whichPs belongs. In other
4-2
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MEMORY-DRIVEN GINZBURG-LANDAU MODEL PHYSICAL REVIEW E 66, 026114 ~2002!
words, using a financial interpretation, a positive seed cap
can never lead to debts. The inclusion of a memory term
change that behavior drastically. To that aim let us anal
how the profit rate will be controlled by the feedback co
pling. For nonzero memory term the solution of Eq.~3! can
be found using Laplace transformation, defined byL„P(t)…
[P(z)5*0

`P(t)exp(2zt)dt. We get

P~z!5

P02
uB~z!

11lA~z!

z2
r

11lA~z!

with

A~z!5L„P2~ t !… and B~z!5L„P3~ t !…. ~7!

A time persistent solution is obtained by making the ans
P(t)5 f 1F(t) or afterL,

P~z!5
f

z
1F~z!, ~8!

where the functionF(z) remains regular forz→0. The
quantity f represents the order parameter in the limitt→`.
Apart from the trivial solutionf 50 there exist two new
branches of nontrivial solutions,

F6[
f 6~x,w!

P0
5

x

2~11x! F16sgn~P0x!sgn~11x!

3A11
4w2~11x!

x2 G , x5
l

u
. ~9!

As remarked before, the parameterl is assumed to be
posititve or negative, whereasu is always positive. There
fore, the dimensionless quantityx can also adopt both signs
In case of vanishing memory it resultsf 6(x50,w)5Ps , in-
dependent ofP0 and in accordance with Eq.~5!. In general,
the solution depends on the initial valueP0. For an infinite
memory strengthx→` the stationary solutions are given b
F151 andF250, i.e., the parametersr andu are irrelevant.
This is consistent with the assumptionr 5u50 from the
beginning. If one starts withP05Ps it results F151 or
F252(11x)21.

B. Phase diagram

In this subsection the phase diagram is obtained by
ploying linear stability analysis. Note that it cannot be p
formed in terms ofF(z) defined in Eq.~8!. Instead of that
we have to insertP(t)5 f 1F(t) in Eq. ~3!. As the result we
find F(t)}exp(2Lt), where the stability exponentL
5 f 2(3u1l)2r can be rewritten as

L6

r
5211

F6
2

w2
~31x![211

31x

11x S 11
xF6

w2 D , xÞ21.

~10!
02611
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The parameterx characterizes the influence of the memo
x5l/u. The stationary solutionsF6 are given in Eq.~9!.
The special casex521 will be discussed separately. He
we study the stability as well as the stationary solution its
in terms of the free parameterx, where the gain and los
parametersr and u are assumed to be fixed. If the memo
strength is positivel.0 or alternativelyx.0, then both
nonlinear terms in the basis equation~3! with the coupling
constantsu and l, respectively, become loss terms, a
therefore the memory term should only modify the station
solution. Indeed, we get in accordance with the general
cussion, presented in Sec. II, the following results. If t
initial value P0.0 and further larger than the stationa
value Ps without memory, see Eq.~5!, i.e., w,1, then the
time delay leads to a reduced gainP0. f 1.Ps , whereas in
the opposite casew.1, the memory does not reveal an a
ditional enhancement of the capitalP0, f 1,Ps . Both solu-
tions are stable for all values of the parameterx.0. If one
starts with debts, i.e.,P0,0, the stable solution isf 2 and all
the results are valid in the same manner as forf 1 . The
situation is comparable with that one obtained for a z
memory termx50.

The situation becomes more complicated in case ol
,0, because the nonlinear terms in Eq.~3! are competitive
ones. Moreover, the behavior depends decisively on the
tios x5l/u,0 and onw5Ps /P0, respectively. In discuss
ing the complete solution we have to distinguish three ca
~i! 2u,l,0, ~ii ! l52u, and ~iii ! 23u,l,2u. The
previous restriction to23,x,21 is originated by the ob-
servation that forx,23 the stationary solution is alway
unstable in accordance with the second part of Eq.~10!.

~i! 21,x,0 or ulu,u. In the case of a small memor
strength there exist two real solutionsF6 . From Eq.~9! we
conclude

F1~P0.0!5F2~P0,0!,

F2~P0.0!5F1~P0,0!. ~11!

Therefore, further discussion can be restricted toP0.0, i.e.,
positive seed capital. Forw.1 we get a positive solution
with

f 1~x,w!.Ps.P0 or F1~x,w!.w.1. ~12!

Inserting the last result into Eq.~10!, we find that the stabil-
ity exponent fulfills the relationL1.0, and consequently
the solution is stable within the whole range of the memo
parameter 21,x,0. Thus, a small negative memor
strength leads to a real increase of the order parameterP(t).
The gain is greater than that obtained without memory
fects. In case ofw,1 or Ps,P0 there exists a critical value
xc above which the order parameterP(t) can change its sign
i.e., starting with a positive initial valueP0.0, the system is
able to reach the negative stationary solutionf 2,0. In other
words, the system may switch over to the negative branc
the stationary solution which is impossible without th
memory term. To study that problem in detail, we have
analyze the stability exponentL. From Eq. ~10! it results
4-3



d
s

se

v
he
e
ue
n
ly
a

s-

f

ica

he

a

this
ry
s
the
ef-

o-

the

re-
eed

ful-

n
o-
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only one stable solution within the interval 1/A2,w,1 in
the whole range21,x,0. However, for 0,w,1/A2 the
exponentL1 is only positive forxc,x,0, wherexc is de-
termined as a solution ofx2(31x)54w2. This equation of-
fers three real solutions where only one of them is situate
the interval21,x,0. The critical memory strength follow
from the relation

xc5A3sin~w!2cos~w! with w53arccos~2w2!

w,
1

A2
. ~13!

If w!1 the critical parameter islc.22AuPs /(3uP0u). For
x.xc the solutionF1 becomes unstable and as the con
quence, the always stable solutionF2,0 is adopted, i.e.,
P(t) is able to cross thet axis during its time evolution.
Insofar, a negative memory strength allows a change o
from gain to loss of capital. Due to the symmetry of t
problem, manifested by Eq.~11!, one can also realize th
inverse situation by starting with a negative initial val
~debts! and ending up with a positive stationary solutio
Such a behavior is driven by the memory effect exclusive
The discussed behavior can be likewise verified, at le
quantitatively, using the basis equation~3!. Let us assume a
positive initial valueP0.0 and further suppose the exi
tence of a finite timet1.0 at whichP(t) fulfills P(t1)50.
Such a behavior can be realized if] t8P(t8),0 is fulfilled in
the complete time interval 0,t8,t1. A further decrease o
P(t) is only guaranteed forl,0 as it follows from Eq.~3!
directly. The results can be further confirmed by a numer
approach, discussed in Sec. IV.

~ii ! x521. If both loss terms are balanced out, t
memory parameter is fixed byulu5u. In that case the initial
value P0 has to be as the free parameter. Both station
solutions are degenerated withF5w2. Furthermore, the sign
of the seed capital determines the sign ofP(t) in the whole
parameter space. The stability exponents reads

FIG. 1. Phase diagram in thep-x plane withp5P0. The phase
boundaries are the zeros of the stability exponentL1 given by Eq.
~10!.
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Therefore we get a stable solution ifP0,Pc5A2Ps whereas
in the opposite case the solution is unstable. Note that in
case the initial valueP0 is overrated because the stationa
solution leads tof }P0

21, which indicates that the model i
not very appropriate in that case. On the other hand,
result points to the decisive influence of the time delay
fects to the stationary solution of a nonlinear model.

~iii ! 23,x,21. In contrast to the other cases both s
lutions F6(P0.0) are positive with

F6~P0.0!5
1

2~11x!
@x7Ax214w2~x11!#.0.

~14!

Thus, starting with a positive initial valueP0, the evolution
ends up always at a positive stationary value. Due to
symmetry properties given by Eq.~11! we conclude that a
negativeP0 never leads to a positive stationary value. The
fore, the discussion can be restricted again to a positive s
capital. If w.1, the solutions are real forx>x1522w2

12wAw221 or x<x2522w222wAw221. Otherwise
there appear complex solutions. The stability exponents
fill the relation

L6,0 for 23,x,x3

and

L2.0 for x3,x,21, ~15!

where x3 is the corresponding solution of the equatio
x2(31x)524w2(x11). There appears only one stable s
lution F2 within the intervalx3,x,21. In case of 1/A2
,w,1 we find

L1.0 for 23,x4,x,22

and

L2.0 for x5,x,21, ~16!

FIG. 2. Temporal evolution ofP(t) with l520.8 andP052
for different methods discussed in Sec. IV, parameterQ50,1/2,1;
step sizet50.1.
4-4
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FIG. 3. Temporal evolution ofP(t) for nega-
tive memory l520.8 and P052 with a high
time resolution, step sizet50.001. The curves
for different Q50,1/2,1—parameters are dege
erated for such a high resolution.
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wherex4 andx5 are the solutions of the equationx2(31x)
54w2. If 1,w,1/A2 the solutionF2 is unstable in the
whole range of the memory strength23,x,21, whereas
the solutionF1 is stable in the intervalx4,x,22. Let us
shortly discuss the special case of a zero initial valueP0
50. Here, the stationary solution and the stability expon
read

f 656PsA 1

11x
,

L

r
5

2

11x
xÞ21.

For 21<x,` the solution is stable whereas forx,21 the
solution is unstable. Summarizing all the different cases
get a phase diagram within theP0-x plane, which is depicted
in Fig. 1. Here, the sign of the stability exponentL1 is
represented for fixed parametersr and u. As discussed be
fore, we get stable and unstable solutions, and furthermo
unphysical complex solution discussed before Eq.~14!. The
phase boundaries are found analytically by calculating
zeros of the stability exponentL in Eq. ~10!. More details of
the numerical approach are discussed in the following s
tion.

IV. NUMERICAL APPROACH

To illustrate the analytical results outlined in the prece
ing section, the application of numerical approximations
the integrodifferential Eq.~3! is efficient. Because of the
nonlinearity one cannot expect solutions in a closed fo
Instead of that we have applied numerical techniques to
ure out the solutionP(t). Introducing discrete time steps b
tn5nt (t is the step size! we discuss the evolution equatio

Pn115Pn1tF rPn2uPn
32l(

j 50

n

v j
nPn2 j

2 ~Pj 112Pj !G .

~17!

The weightsv j
n depend on the quadrature rule which is a

plied. Here, we use the so-called generalQ rule discussed
02611
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for another class of integrodifferential equations of convo
tion type, see Ref.@21#. In that case the weights are assum
as follows:

@v0
n ,v1

n , . . . ,vn21
n ,vn

n#5@Q,1, . . .,1,12Q#,

whereQ50 leads to the implicit Euler formula,Q51 cor-
responds to the explicit Euler-formula, andQ51/2 is the
trapezium rule. In our approach we have mainly used
explicit Euler formula to compare the asymptotic behavior
P(t), compare Eq.~9!, with the numerical ones. In Fig. 2 on
can find the results for different realizations of the parame
Q, but using the same step sizet50.1. For such a low reso
lution of the step width the numerical results suggest that
time evolution ofP(t) tends to the unstable fixed point an
the solution remains positive. A higher resolution with a r
duced step size offers a more pronounced behavior re
sented in Figs. 3 and 4 in case ofx,0. The finer the time
grid chosen, the smaller is the difference between the dif
ent Q methods, in Fig. 3 the curves forQ50,1/2,1 are de-
generated. The oscillations, visible in Figs. 3 and 4, are
yet suppressed in a decisive manner. It remains an o
problem, whether the oscillations are due to the feedb
coupling or induced by the discretization procedure. Our
merical approach, by reducing systematically the time g
suggests that the oscillations and the steps are an intr
effect of the nonlinear system. A possible scenario could
related to the occurence of metastable states, in which
system is confined temporarily. Under the influence of
feedback coupling the system is able to escape from th
metatstable states. Equation~3! offers in case ofl,0 an
decreasing derivative of] tP(t),0 if it had been decrease
in the past] t8P(t8),0 with t8,t. Both Figs. 3 and 4 illus-
trate that the positive stationary solution becomes unsta
and the trajectoryP(t) changes its sign abruptly and cross
the t axis. Likewise in Fig. 4 the time evolution ofP(t) is
shown for the same negative value of the memory stren
4-5
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FIG. 4. Temporal evolution ofP(t) for l
,0 andQ50. The dotted line corresponds to th
positive fixed point which becomes unstabl
P(t) changes its sign.
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but for a longer time scale. Notice that the crossing scen
is in accordance with the analytical results. It correspond
the unstable island in the upper half of Fig. 1. The effec
traced back to the feedback coupling in a nonambigu
manner.

V. CONCLUSIONS

In this paper we have discussed a more general ti
dependent Ginzburg-Landau model by including a s
organized memory coupling, i.e., the instantaneous chan
rate of the order parameter is not only determined by tim
local gain and loss terms, but additionally by the chang
rate in the past. Consequently it means in terms of a finan
transaction, the flow of the money is determined by the
cumulation or the loss of capital at previous times. To c
ture the influence of such a delay process, a memory t
had been included into the evolution equation. To find out
analytical form of such a feedback coupling, projecti
methods of statistical mechanics are adopted. Especially
form of the memory is suggested by investigation in glas
or the anomalous diffusion of particles in a disordered me
We are aware that the form of the feedback term is the m
controversial point. However, the time delay effects are
troduced in our approach in such a manner that there app
a competitive situation between two nonlinear terms, on
s

.
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related to an instantaneous loss term whereas the other o
originated by the memory effects. Even that kind of comp
tition leads to a richer behavior as the convention
Ginzburg-Landau model. The main feature of our model c
sists of a mixing of different time scales, which is manifest
by our basis equation~3!. The behavior at the current time i
related to the rates in the past. Therefore, the system o
the possibility that debts can be reduced by prosperous
nipulations in the past although the present situation wo
indicate an unfavorable development. Another form of t
feedback coupling, such as a cumulative one@22#, leads to
completely different results. In the present paper we h
discussed a Ginzburg-Landau-like model with feedba
where the stationary solution can be found exactly. Based
a linear stability analysis, we obtain a phase diagram wh
differs significantly from the standard model. Especially, t
feedback reveals the ability of a switchover of the two s
tionary solutions. The results are supported by numerical
lutions. We believe that memory effects are also a feature
other dynamical complex systems.
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